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Abstract

A model presented by Talbot (1999) attempts to use the shapes of S- or J-shaped structures in ductile shear zones experiencing simple
shear to infer information about rock rheology, specifically the value of the stress exponentn in a power-law rheology. The model is
incorrect, so cannot yield any insight into the deformation or rheology of shear zones. The shape of S- or J-shaped structures is more likely a
function of variation across the shear zone of water fugacity, grain size, or other weakening mechanisms.q 2001 Elsevier Science Ltd. All
rights reserved.

1. Introduction

Talbot (1999, hereafter referred to as Talbot) hypothe-
sizes that the characteristic S- or J-shaped displacement
patterns observed within ductile shear zones are a conse-
quence of power law flow of material having differing stress
exponentsn . 1. However, his mathematical model is
physically incorrect, and in fact variations inn cannot
account for variations in S- and J-shaped displacement
patterns. In this paper I discuss why Talbot’s model is in
error and why his hypothesis cannot explain observed
displacement patterns in ductile shear zones undergoing
simple shear. Instead, I suggest that weakening processes
such as hydrolytic weakening or grain size reduction, if
variable across a shear zone, can produce velocity profiles
with S- or J-shapes like structures observed in shear zones.

2. Talbot’s solution: shear zone deformation driven by
an along-strike pressure gradient

Because the derivation is relevant to later discussion, I
re-derive Talbot’s expression. Let a shear zone of widthw
strike parallel to thex-direction and perpendicular to the
y-direction (Fig. 1). Deformation in the third dimension
(z-direction) is assumed constant and therefore is ignored.
Channel flow in this shear zone is driven by a constant
pressure gradient2P=2x � 2DP=L parallel to the strike of

the shear zone, whereP is pressure andL is a characteristic
along-strike length scale (e.g. Turcotte and Schubert 1982).

As Talbot notes, the only incompressible deformation
that can occur in shear zones of constant width is simple
shear. For the geometry shown in Fig. 1, this means that
2u=2y is the only non-zero velocity gradient and_1xy �
1=2 2u=2y is the only non-zero component of strain rate.
Under these conditions the equations of motion reduce to
the single equation

2txy

2y
� 2P

2x
: �1�

For a fluid deforming by power law creep, the strain rate
_1xy is related to deviatoric stresstxy by

txy � C2
1
n _1

1
n
xy �2�

wheren is the stress exponent andC is a rheological para-
meter that can depend on factors such as temperature, fluid
content, and grain size (e.g. see reviews by Evans and
Dresen, 1991; Kohlstedt et al., 1995), but which in Talbot’s
analysis is taken as constant. Substituting for stress, strain
rate, and pressure gradient in Eq. (1) gives
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With no-slip boundary conditions,u� 0 on y�^w/2,
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the solution is
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(Turcotte and Schubert, 1982, eq. 7-121) which when non-

dimensionalized by the maximum velocityumax (at y� 0) is

u=umax� 1 2 2� jy =wj �n11
: �5�

This solution is quoted by Talbot and is sketched on the
left side of Fig. 1(a). It is symmetric across the solution
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Fig. 1. (a) Geometry of original channel flow model (left-hand side) and Talbot’s model (right-hand side), and sketches of resulting velocity distributions.
In the original model (Turcotte and Schubert 1982), flow is driven by a pressure gradient and confined between fixed boundaries aty�^w/2. The velocity
(or displacement) distribution is parabolic and symmetric abouty� 0. Note that the entire solution can be constructed by taking half of the solution
(from 0 � y� w/2, shown with grey highlight) and joining it acrossy� 0 to its reflection. Talbot took this half of the solution, but joined it
acrossy� w/2 to its inverse, constructing an antisymmetric function having apparent boundary conditionsu� umax at y� 0 andu� -umax at y� w.
The correct solution for these boundary conditions is shown at the far right of the figure and has no symmetry. (b) Geometry and boundary
conditions for flow driven by relative motions of sides of shear zones. If the shear zone has constant width, there are no along-strike changes, and
the rheological parameterC (Eq. (2)) is constant, the velocity distribution is linear regardless of the value of the stress exponentn. However, ifC is
spatially variable (e.g. due to variable fluid fugacity), the velocity distribution is nonlinear. The example illustrated here results from water fugacity
increasing symmetrically and linearly from a minimum value at the boundaries to a maximum at the center of the shear zone.

Fig. 2. Comparison of Talbot’s solution (grey curves) with corrected solution (black curves) for flow in shear zone driven by a pressure gradient. Numbers on
curves are values of the stress exponentn.



domain2w=2 < y < w=2. However, Talbot applied it to
a different domain, from 0< y < w, ignoring the bound-
ary at y� w/2, and instead implying apparent boundary
conditions u�1umax at y� 0 and u�2umax at y� w.
Doing so produces S-shaped curves, which are sketched in
the middle of Fig. 1(a) and plotted for several values ofn in
Fig. 2.

Talbot’s curves must be incorrect, as they are inconsistent
with Eq. (3) which has the form d/dy[(du/dy)1/n] � constant.
Clearly for n� 1 this implies that the curvature (d2u/dy2)
must be constant over the entire solution domain. When
n . 1, the curvature is inversely proportional to (du/
dy)(121/n), so as long as du/dy does not change sign, as it
does not in Talbot’s curves (Fig. 2), the curvature must
have the same sign over the solution domain. Yet the curva-
tures of Talbot’s solutions do change sign aty� w/2, for
bothn� 1 andn . 1.

Although demonstrated here in terms of violation of the
requirements for the mathematical form of the velocity
profile, the conclusion is identical to Fletcher’s (this issue)
based on the mechanical requirement for continuity of
normal stress within the shear zone: Talbot’s model is
physically incorrect.

The physically correct solution for flow driven by a pres-
sure gradient parallel to the shear zone and with Talbot’s
boundary conditions (u� umax at y� 0 and u�2umax at
y� w) is actually

u
umax

� 1 2 2
Kn11

1 2 K1 2 C1=n DP
L

y
� �n11

C1=n DP
L

n 1 1� �umax
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whereK1 � umax/w 1CDP/2 whenn� 1 and is expressed
implicitly as

Kn11
1 � umaxC

1=n DP
w

n 1 1� �1 K1 2 C1=nDP
� �n11 �7�

whenn . 1. This solution is also plotted in Fig. 2 and differs
from Talbot’s solution. Most obviously, it is not symmetric.
Flow concentrates near one boundary and is suppressed on
the other side where fluid is forced by the boundary condi-
tion to move from lower towards higher pressure.

Clearly, flow driven by a pressure gradient parallel to the
strike of the shear zone cannot produce displacement or
velocity profiles that match the observed S- or J-shaped
strain markers. It is much more likely that flow in shear
zones is a function of the relative velocities of the two
sides of the shear zone. In the next section I explore such
models.

3. Shear zone deformation due to relative motion of the
sides

In the absence of a pressure gradient, the equation of
motion for simple shear deformation states that shear stress

is constant:

dtxy

dy
� 0: �8�

Under the same assumptions as above (power-law rheol-
ogy and boundary conditionsu� umaxaty� 0,u�2umaxat
y� w), it is straightforward to verify that the solution to Eq.
(8) is

u� umax 1 2
2y
w

� �
: �9�

Thus, regardless of the value ofn, velocity varies linearly
across the shear zone. Clearly, this model cannot account for
the curved or sigmoidal pattern of displacements across
shear zones.

The simplest circumstance allowing for formation of S-
shaped velocity profiles is, instead, that the rheology varies
across strike. Indeed, ductile shear zones are commonly
thought to result from some sort of softening process (e.g.
Davis and Reynolds, 1996).

Two common mechanisms for softening in materials
deforming by dislocation creep or diffusion creep are hydro-
lytic weakening and grain size reduction. Rock mechanics
experiments suggest that the deformation of quartz-rich
materials undergoing power-law creep depends on a
powerm /n of the water fugacityfH2O:

t � A21=nf 2m=n
H2O eQ=nRT1

: 1=n �10�
whereA is a pre-exponential constant,Q is the activation
energy,R the gas constant, andT the absolute temperature.
Experiments suggest thatm/n is in the range 0.3–0.5
(Gleason and Tullis, 1995; Kohlstedt et al., 1995;
Kronenberg and Tullis, 1984; Post et al., 1996), so for
values ofn appropriate for quartz, between 2 and 4 (Carter
and Tsenn, 1987),m is probably between 1 and 2.

Alternatively, grain-size reduction (e.g. due to pro-
gressive deformation) weakens materials undergoing
diffusion (linear) creep according to:

t � A21dheQ=RT 1
: �11�

where the exponenth is 2 or 3 (Turcotte and Schubert,
1982).

Both rheologies can be expressed by Eq. (2) ifC, which
includes variable water fugacity, grain size, temperature, or
other environmental parameters, is considered variable. If
so, then integrating the equation of motion (8) gives

u� K1

Z
C y
ÿ �

dy1 K2 �12�

whereK1 andK2 are constants of integration.
A more explicit solution requires specifying howC varies

with position, which in turn requires specifying how water
fugacity or grain size varies with position. To illustrate,
consider variable water fugacity,fH20. Assume thatfH20

increases linearly across half of the shear zone, fromf0 at
the edgey� 0 of the shear zone tof1 at the centery� w/2,
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and symmetrically decreases across the other half of the
shear zone. (The resulting solution also applies to the math-
ematically equivalent scenario in which grain sizeh
decreases inversely withy, as long ash�m/n.)

The oxygen fugacity is

f H2O �
f0 1 2� f1 2 f0�y=w

f0 1 2� f1 2 f0��1 2 y=w�
0 # y # w=2

w=2 # y # w

(
�13�

Substituting for water fugacity in Eq. (12) using Eqs. (13)
and (10) and using the same boundary conditions as before
yields the velocity distribution in a shear zone with linearly
varying water fugacity:

u
umax

�

 
f0 1 2� f1 2 f0�y=w

f1

!11m

21 
f0
f1

!11m

21

 
f0 1 2� f1 2 f0��1 2 y=w�

f1

!11m

21 
f0
f1
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21

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

8>>>>>>>><>>>>>>>>:

0 # y # w=2

w=2 # y # w

:

�14�
Plots of this solution (Fig. 3) show S-shaped curves simi-

lar to Talbot’s curves. In fact, inspection of Eqs. (4) and (14)
shows that iff1 . . f0 andm� n, the mathematical form is
identical. Like Talbot’s curves, a change in curvature occurs
at y � w/2; however the change in curvature is consistent
with the equation of motion when variable rheology is
incorporated and is thus physically plausible.

4. Comparison of simple models with the examples
provided by Talbot

The examples given by Talbot in his figs. 9–12 provide
an interesting array of deformed structures in a variety of
environments and over a wide range of scales. They also
provide a reminder of the care that must be taken when
applying models to real examples, since several (e.g.
Talbot’s figs. 11(a) and 11(c), the Mancos Shale–Mesa-
verde Sandstone contact in the San Juan Basin of Colorado
(USA) and the Alpine fault in New Zealand) appear to
violate model assumptions that deformation is constant
along strike of the shear zone. These examples are thus
not relevant to Talbot’s attempted analysis.

The bent structures near the East Pacific rise shown by
Talbot in his fig. 10(b) require a different explanation
altogether. They have curvatureoppositein sense to the
displacement on the adjacent left-lateral transform faults,
so cannot be formed by simple shear along the transform.
Instead, they are examples of so-called J-structures (e.g.
Crane, 1976; Fox and Gallo, 1984) formed near ridge-trans-
form intersections and generally thought to be extensional
fractures forming along mid-ocean ridges. These fractures
change orientation with proximity to the ridge-transform
intersection due to a greater contribution to the net stress
field from shear stresses along the transform (Fox and Gallo,
1984; Fujita and Sleep, 1978; Lonsdale, 1978; Phipps
Morgan and Parmentier, 1984; Searle, 1984).

The other examples given by Talbot in his figs. 10–12 are
ductile shear zones having displacement profiles for which
his incorrect analysis suggestsn � 5. They are better
explained by a model in which deformation results from
the relative motions of the sides of a zone within which
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Fig. 3. Velocity and shear stress distribution for flow in a shear zone driven by relative motion of its sides, when water fugacity increases linearly and
symmetrically fromf0 at the sides tof1 at the center. Grey curves are for small variation in water fugacity (f1/f0� 2) and black curves are for large variation in
water fugacity (f1/f2� 103). Whenf1/f0 . . 1, the shape of these curves identically matches that of Talbot’s (Fig. 2).



increased fluid fugacity, grain size reduction, or some other
mechanism has weakened the rock. All the examples that
Talbot fit with n � 3 can be directly fitted with such
models, which havem or h � 3. Examples fit by Talbot
with n between 3 and 5 have curvatures more extreme than
can be obtained from Eq. (14) if water fugacity varies line-
arly. They could be fit by adopting a nonlinear variation of
water fugacity, but since it is difficult to independently
constrain the distribution of fluid fugacity, little is to be
gained by such an exercise. The object here is not to attempt
to uniquely determine the distribution of fluid fugacity, but
to suggest that geologically reasonable spatial variations in
fluid fugacity or grain size can, in general, produce S-shaped
velocity profiles. If such profiles, generated from temporally
constant velocity fields, approximate the formation over
time of displacement profiles in field examples, then these
models may be useful guides towards better understanding
of the links between weakening mechanisms, such as grain
size reduction or hydrolytic weakening, and the strain and
displacement distribution within shear zones.

5. Conclusions

From simple models of deformation in shear zones,
Talbot (1999) proposes that the shapes of J- or S-shaped
structures observed in many shear zones directly reflect
the value of the stress exponentn in the power-law rheology
governing flow. However, his model violates physical law.
Although I agree with Talbot that such structures offer clues
to the dynamics of deformation in shear zones, I suggest that
their shapes depend on variable fluid fugacity, grain size, or
other mechanisms that weaken the rock and localize defor-
mation. A model incorporating this hypothesis produces
velocity profiles that match structures in observed shear
zones equally as well as Talbot’s, but without violating
physical principles.
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